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ABSTRACT
Updating network flows in a real-world setting is a nascent
research area, especially with the recent rise of Software
Defined Networks. While augmenting s-t flows of a single
commodity is a well-understood concept, we study updat-
ing flows in a multi-commodity setting: Given a directed
network with flows of different commodities, how can the
capacity of some commodities be increased, without reduc-
ing capacities of other commodities, when moving flows in
the network in an orchestrated order? To this extent, we
show how the notion of augmenting flows can be efficiently
extended to multiple commodities for anycast applications.

CCS Concepts
�Networks→Network management; �Theory of com-
putation → Network flows;

Keywords
Software Defined Networks, Congestion, Anycast, Flow Aug-
mentation, Multi-Commodity Flow

1. INTRODUCTION
The rise of Software Defined Networks (SDNs) has sparked

an increasing interest in applying network flow algorithms.
In contrast to networks that use standardized distributed
protocols, SDNs allow for utilizing the available bandwidth
almost completely. The algorithmic tool to manage network
traffic in an efficient way is provided by flow algorithms.

Since network traffic is highly dynamic, existing SDN solu-
tions [3, 8, 11, 12, 14] frequently re-compute the optimal way
to route traffic demands, usually using an approach based
on linear programming (LP), often accepting the overhead
that a new solution will re-route many existing flows that
did not change their demands.

In this paper we propose to abandon LP-based solutions
in favor of path augmentation, a technique developed and
studied primarily in the era of The Beatles. Even though

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICDCN ’16, January 04-07, 2016, Singapore, Singapore
© 2016 ACM. ISBN 978-1-4503-4032-8/16/01. . . $15.00

DOI: http://dx.doi.org/10.1145/2833312.2833450

path augmentation is still taught in introductory lectures,
little research has been devoted to it since, probably be-
cause more versatile (and also polynomial-time) LP-based
techniques were introduced.

We believe that SDNs should be managed in an incremen-
tal way. If a commodity (a source-destination node pair)
wants to reduce its bandwidth, we can simply do that with-
out harm. If a commodity wants to increase its bandwidth
(or a new commodity is introduced to the network), we try to
increase its flow by using path augmentation. Maybe we are
lucky, and the increased demand fits without changing any
of the other flows. Maybe we are less lucky, and re-routing
(also called migration) of some other flows is necessary, con-
ceivably even recursively.

Understanding flow migration is still in its infancy: It is
not clear in general (1) when congestion-free migration is
possible, (2) to what solution one should actually attempt
to migrate, (3) how to reasonably bound the migration time.

Moreover, there is another problem: Apart from a few
exceptions that we discuss in the related work section, path
augmentation was only developed for s-t-flow problems with
a single commodity. In real networks we have multiple com-
modities, so we first need to generalize path augmentation
to flow augmentation, a path augmentation technique sup-
porting multiple commodities.

It turns out that generalizing path augmentation is not
as easy as one may hope. As Hu notes in his influential pa-
per [9], “it is unlikely that similar techniques can be developed
for constructing multicommodity flows”.

This is why this paper focuses on an important special
case of multi-commodity flow, the so-called anycast prob-
lem, cf. [24]. In the anycast problem, we have different com-
modities, one for each source node. All these commodities
must be routed to an arbitrary set T of destination nodes. In
contrast to general multi-commodity flow problems, it does
not matter which commodity ends up at which destination,
as long as the destination is in the set T . Commodities may
route to any destination of the set T , hence anycast.

Using popular terminology, think of T as the set of servers
of a cloud provider; customers do not care which server gets
the (potentially enormous [25]) data, as long as “the data
gets to the cloud”.

Applying our method of flow augmentation, we develop
an efficient algorithm for consistently migrating to any de-
sired feasible set of traffic demands. We require only one
augmenting flow per commodity, minimizing network over-
head. Thus, for the anycast setting, we solve all the three
issues (1), (2), (3) mentioned above.
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1.1 Structure of our Paper
After discussing the background and related work in Sec-

tion 2, we continue with the model Section 3 – where the
term consistent migration is defined formally. In Section
4 we develop a technique to use augmenting flows for con-
sistent migration in the anycast setting. Before concluding
in Section 6, we show in Section 5 how to implement our
method efficiently in practice.

2. BACKGROUND AND RELATED WORK
To the best of our knowledge, the concept of flow aug-

mentation has not yet been used in the context of consistent
migration. Thus, we treat both topics separately.

2.1 Augmentation & Multi-Commodity Flows
The notion of augmenting paths for single-commodity flows

has been introduced in the seminal works of Ford and Fulker-
son [5, 6], with their concepts influencing thousands of pub-
lications to this day. In the last decades, there has been a
great amount of research regarding (multi-commodity) flow
problems. We refer to the textbooks by Cormen et al. [4]
and Ahuja et al. [1] for an in-depth overview.

Hu [9] studied augmenting paths for a two-commodity
setting and generalized the results of Ford and Fulkerson
to maximize the simultaneous flow of two commodities. By
limiting the problem to just two commodities, he introduced
so-called backward and forward paths, which together allow
for an augmentation of the network.

Furthermore, in 1978, shortly before the celebrated pub-
lication of the Ellipsoid method [13], Itai [10] published an
improved version of Hu’s two-commodity flow algorithm and
showed that maximizing a two-commodity flow is as difficult
as linear programming in the sense that they are polynomi-
ally equivalent.

However, while many further results were published for
multi-commodity flow problems in general and augment-
ing path algorithms for single-commodity flow problems in
particular, the application of augmenting paths to multi-
commodity flow problems has been sparse.

Rothfarb et al. applied augmenting paths in the following
way [23]: To maximize multi-commodity flows with just one
destination t, they added a logical super-source s, considered
all commodities as the same commodity with new source s,
and then solved the obtained single-commodity flow problem
using the standard augmenting path method. Afterwards,
the single-commodity flow is split into a multi-commodity
flow again, using arc-chain decomposition. Since the arc-
chain decomposition is independent of the initial flow, pos-
sibly all single-commodity flows are re-routed completely,
even though already a small modification might have been
sufficient. Furthermore, their algorithm does not deal with
the problem of asynchrony in SDNs (which is not surprising,
considering the concept of SDNs was still decades away), and
as thus, will induce congestion if used for migration.

2.2 SDNs & Multi-Commodity Flows
Unlike multi-commodity flow problems regarding demand

satisfaction, the study of migration of flows is still in an
emergent state. Perhaps it was not before the rise of Soft-
ware Defined Networks (SDNs) that moving flows onto other
paths became a relevant topic in practice. In SDNs, a central
controller can change the behaviour of the switches in the
network, allowing for, e.g., arbitrary flow allocations among

(a) Initial network with just one flow from s1 to t.

(b) If the lower flow is inserted first, there will be congestion.

(c) Desired flow placement with two flows of two commodi-
ties.

Figure 1: This figure depicts a small network to in-
troduce the concept of consistency. In the above
examples, all flows have a size of one and all edges
have a capacity of one as well. If the SDN controller
desires to migrate the network from Subfigure 1a to
Subfigure 1c in order to add a flow for the second
commodity outgoing from s2, then the commodity
outgoing from s1 has to be moved first. Else, due to
asynchrony, s2 could start a flow before the last edge
is free, causing congestion. The concept is defined
formally in Condition (5) in Subsection 3.2.

the links. There is a great amount of interesting checkable
properties that the controller might want to verify (for ex-
ample by model checking, cf. [16, 20]), such as waypointing
via firewalls, loop freedom, or network connectivity, cf. [3]
for an overview of the current state of the art.

We focus our attention on preventing capacity constraint
violations caused by asynchrony during the migration of
flows, i.e., consistent updates for multi-commodity flows.
Imagine a small example network, in which there are two
directed edges, each filled to the brim with a different com-
modity. Due to a planned network optimization, the com-
modities might have to swap edges [18], i.e., each commodity
will be routed along the other edge. Should this swap not
be synchronized perfectly, then one commodity will migrate
before the other, causing one edge to be over capacity. How-
ever, clock synchronization for simultaneous updates in the
switches is far from perfect, and even if it was, current indus-



try switches might straggle [11] – taking up to 100x longer
than average to implement updates [12].

Hong et al. [8] propose to always leave a fraction s of
the capacity of each edge unutilized s.t. when a migration
of flows has to occur, it can be performed in d1/se updates.
However, this approach fails when some edges are used at full
capacity. Thus, the authors also present a linear program
that essentially tries if a migration is possible in 1, 2, 4, 8, . . .
update steps, possibly temporarily rerouting flows to arbi-
trary edges in the network. Nonetheless, they cannot decide
if a consistent migration is possible or not. A similar ap-
proach is also used in a datacenter setting by Liu et al. [14].

The work of Jin et al. [12] follows a different approach:
They build a combinatorial graph from the current and de-
sired flow allocations, and try to find an ordering of how
to move the flows s.t. the individual updates are consistent.
Their search algorithm cannot guarantee to find a solution
if one exists, which is why they heuristically opt to break
demand constraints temporarily if the flows have been mi-
grated in such a way that no local migration progress is
possible.

Temporal breaking of demand constraints and congestion
is also an idea implemented by Jain et al. [11]: Instead of
considering them at all, they aim to migrate as fast as pos-
sible in order to minimize the effects of capacity constraint
violations.

A related but algorithmically more intricate technique is
proposed by Mizrahi, Rottenstreich, and Moses [17, 18, 19]:
They schedule updates at synchronized time slots, instead
of just applying them as fast as possible. In their work, they
show that time-based updates can be a powerful mechanism
in SDNs, and make a case for its inclusion in standard pro-
tocols such as OpenFlow.

Finally, Reitblatt et al. [21, 22] deal with asynchrony by
inserting version numbers into each packet: With both old
and new rules implemented in the network at the same time,
a packet will always be handled by one of the two rule sets,
but never a mix of them – a property they call per-packet
consistency. They extend their work to per-flow consistency
by creating essentially multiple“versioned”distinct flows per
commodity. Unlike most other work (including ours), they
can guarantee that all packets in the same flow are forwarded
according to the same rules, an important element for, e.g.,
load balancers or waypointing. Even though their method is
not aimed at congestion per se, it still prevents many issues
causing capacity constraint violations.

3. MODEL

3.1 Network Flows
We consider a network as a directed graph with edge ca-

pacities. For the definition of a multi-commodity flow, we
first need to define a single-commodity flow via the usual
flow constraints:

Definition 1. Let G = (V,E) be a simple connected di-
rected graph with |V | = n nodes and |E| = m edges. Denote
the set of edges outgoing from a node v ∈ V by out(v) and
the set of incoming edges by in(v). A network is a pair
N = (G, c) where c : E → R+ is a map assigning each edge
a positive capacity. We call a pair of distinct nodes s, t ∈ V
a commodity K. We define a single-commodity flow for K

as a map F : E → R≥0 s.t.

F (e) ≤ c(e) for all e ∈ E, (1)∑
e∈out(v)

F (e) =
∑

e∈in(v)

F (e) for all v ∈ V \ {s, t}, (2)

∑
e∈out(s)

F (e) = dF =
∑

e∈in(t)

F (e), (3)

where dF is called the demand of K (w.r.t. F ). We also call
dF the size of F .

We now extend the definition of a single flow to multi-
commodity anycast, for which we encompass all nodes in
T in a single node t. Our results can be applied analogously
to the “edge reversed” model variant, where an arbitrary
set of source nodes S routes multiple commodities to their
assigned distinct destinations.

Definition 2. Let N be a network and let Ki = (si, t) be
commodities where s1, s2, . . . , sk, t ∈ V are pairwise distinct
nodes. Then we call a tuple K = (K1,K2, . . . ,Kk) a multi-
commodity. Let Fi be a flow for the commodity Ki for all
1 ≤ i ≤ k. A tuple F = (F1, . . . , Fk) is called a multi-
commodity flow for K if

k∑
i=1

Fi(e) ≤ c(e) for all e ∈ E. (4)

We will assume in the following that all considered flows are
cycle-free. In the presented algorithms, cycles may appear
temporarily, but will always be explicitly removed. In par-
ticular, this implies that

∑
e∈in(s) F (e) = 0 =

∑
e∈out(t) F (e)

if dF > 0. For the sake of simplicity, we assume that this
equation also holds for the case of dF = 0 (which is a natu-
ral assumption from a practical point of view as we want to
study the traffic from a source s to a destination t).

Definition 3. We call a flow F cycle-free, if there is no
directed cycle C in N s.t. F (e) > 0 for all e ∈ C.

Lastly, we will need the concept of a partial flow in the
following sections:

Definition 4. Let F be a single-commodity flow for the
commodity K = (s, t) and let v ∈ V . We call a flow F ′ for
the commodity K′ = (v, t) a partial flow of F starting in v
if the following conditions hold:

F ′(e) ≤ F (e) for all e ∈ E

F ′(e) = F (e) for all e ∈ out(v)

Furthermore, we call a flow F ′′ for the commodity K a sub-
flow of F if F ′′(e) ≤ F (e) for all e ∈ E.

Note that, since we assume all considered flows to be cycle-
free, all the traffic leaving v (in the flow F ) must finally end
up in t which implies that (for each v ∈ V ) there exists a
partial flow of F starting in v.

3.2 Consistent Migration
We define the term consistent migration (i.e., not vio-

lating edge capacity constraints due to asynchrony in node
updates) as proposed in [8, 12, 14], who implemented and



evaluated the consistent migration of flows in SDNs with
multiple production data center networks across three con-
tinents with tens of thousands of servers. We note that the
term consistent updates is sometimes used for different con-
cepts in SDNs, e.g., in [2, 15]. We refer to Figure 1 for an
introductory example.

Definition 5. Let N be a network and let F = (F1, . . . ,
Fk), F ′ = (F ′1, . . . , F

′
k) be multi-commodity flows for the

multi-commodity K s.t. dFi ≤ dF ′i , 1 ≤ i ≤ k. The tuple

(N,F ,F ′) is a consistent migration update from F to F ′ if

k∑
i=1

max
(
Fi(e), F

′
i (e)

)
≤ c(e) for all e ∈ E. (5)

A consistent migration from F to F∗ is a sequence of con-
sistent migration updates
(N,F ,F1), (N,F1,F2), . . . , (N,Fj ,F∗).

Note that for each commodity K ∈ K the demand of K
w.r.t F ,F1, . . . ,Fj ,F∗ is non-decreasing. If the demand of
flows was smaller in F ′, then one would drop corresponding
parts of the flows before migration.

4. AUGMENTING FLOWS FOR MULTIPLE
COMMODITIES

In the case of one source and one destination, it is well-
known [6] how to use an obtained augmenting path P in
order to transform a given flow into a new enhanced flow
whose size is increased by the “capacity” of P . When we
have multiple sources, the “standard” augmenting path does
not account for moving multiple commodities at once, since
it is only defined to modify the flow of a single commodity.

In the following Definition 6, we define an augmenting flow
for the case of a multi-commodity flow where we have multi-
ple sources (but only one destination). The augmenting flow
may use edges from the residual network, which is created
by adding a back-edge in the reverse direction for every edge
with some flow on it, cf. the dashed edges in Subfigure 2b.
Note that while the augmenting flow may use these back-
edges, there will be never any “real” flow routed over these
edges, as they are not part of the physical network and just
used for our algorithms.

We further introduce the notion of a farthest back-edge
which is a back-edge used by the augmenting flow “after
which” the augmenting flow only uses forward edges.

Definition 6. Let N be a network and let F be a multi-
commodity flow for the multi-commodity K. We denote by
G the graph obtained from G by adding an edge e∗ = (v, u)
to G for any edge e = (u, v) ∈ E. Let E∗ be the set of all
newly added edges. If an edge e∗ ∈ E∗ starts and ends in the
same vertices as some edge in E, we still consider them as
distinct edges. Set N :=

(
G, c

)
where c(e∗) := c(e) := c(e)

for all e ∈ E. Let K ∈ K. We call a cycle-free (single-
commodity) flow FA for K in N an augmenting flow w.r.t. F
if FA(e) ≤ c(e)−

∑
F∈F F (e) and FA(e∗) ≤

∑
F∈F F (e) for

all e ∈ E. Set E∗FA
:= {e∗ ∈ E∗|FA(e∗) > 0}. We call an

edge (u, v) ∈ E∗FA
a farthest back-edge if there is no path

P from v to t s.t. for all edges e ∈ P we have FA(e) > 0
and there is an edge e∗ ∈ P with e∗ ∈ E∗FA

. Since FA is
cycle-free, such a farthest back-edge exists if E∗FA

6= ∅.

(a) Initial network with just one flow from s1 to t. Currently,
there is no space for a flow from s2 to t, the red flow needs
to be moved first.

(b) An augmenting flow for s2 is found from s2 to t, using a

dashed edge in G that pushes the red flow back to the top.

(c) After the red flow has been pushed to the top, the re-
sulting green augmenting flow uses only “real” edges from
the network. Thus, in a next step, it can be replaced with
a proper “real” flow.

(d) The resulting flows are feasible and use only edges in the

“real” network, none of the (hidden) dashed ones from G.

Figure 2: In this small introductory example net-
work to illustrate augmenting flows, all edges have a
capacity of one and all flows have a size of one. The
solid edges are the “real” edges in the network N ,
while the dashed edges in Subfigure 2b exist just in
G: A reverse edge for every edge with some flow on
it. Dashed edges from G are never used for routing,
they are just used to find augmenting flows. If the
task is to add a flow from s2 to t, then one searches
for an (augmenting) flow from s2 to t – but not just
in N , the dashed edges from G are allowed as well.



Note that in this paper, such an augmenting flow always
“belongs” to a specific commodity K contained in the re-
spective multi-commodity.

We develop a technique in Algorithm 1 to transform the
given multi-commodity flow step by step into a multi-com-
modity flow where the flow size for K is increased by the
size of the augmenting flow, see Theorem 2. A very small
introductory example is given in Figure 2. We show that
the transformation steps correspond to consistent migration
updates, thus proving that the new (multi-commodity) flow
can be obtained from the old one by a consistent migration.

The general idea is as follows: Given a multi-commodity
flow and an augmenting flow, Algorithm 1 will perform a
consistent migration update (Lemma 6) in the network.1

Essentially, one execution of Algorithm 1 will process one
edge of the augmenting flow. As the augmenting flow can
have at most m = |E| edges, the augmenting flow will be
inserted consistently after a linear number of iterations of
the algorithm (Theorem 2). We refer to Figure 3 for an
advanced illustration of Algorithm 1.

Algorithm 1. Let N be a network and F = (F1, . . . , Fk)
be a multi-commodity flow for the multi-commodity K =
(K1, . . . ,Kk). Let FA be an augmenting flow w.r.t. F for
some commodity (s, t) = K ∈ K. Let E∗FA

be non-empty
and let (u0, v0) = e∗0 ∈ E∗FA

be a farthest back-edge. Let

Fk1 , ..., Fkq ∈ F , k1 < · · · < kq be the flows2 which assign
the edge e0 (i.e., the edge which induced the adding of e∗0 to
G) a non-zero value, i.e., the flows which are present on this
edge. Let r be the smallest index such that

∑r
z=1 Fkz (e0) ≥

FA(e∗0). Set U := FA(e∗0) −
∑r−1

z=1 Fkz (e0). We migrate to
a new multi-commodity flow F ′ = (F ′1, . . . , F

′
k) for K and a

new augmenting flow F ′A w.r.t. F ′ as follows:

1. Begin by setting F ′y(e) := Fy(e) for all e ∈ E and all
1 ≤ y ≤ k, and F ′A(e) := FA(e) for all e ∈ E ∪ E∗.

2. Redefine F ′ on e0 and F ′A on e∗0: Set F ′kz
(e0) := 0

for all 1 ≤ z ≤ r − 1, F ′kr
(e0) := F ′kr

(e0) − U , and
F ′A(e∗0) := 0.

3. Choose a partial flow of FA starting in v0 and choose a
subflow Fa (of this partial flow) of size FA(e∗0). (Note
that Fa(e∗) = 0 for all e∗ ∈ E∗ because e∗0 is a farthest

back-edge.) Decompose Fa in r subflows F
(1)
a , . . . , F

(r)
a

of sizes Fk1(e0), . . . , Fkr−1(e0), U such that, for each

edge e ∈ E, we have
∑r

z=1 F
(z)
a (e) = Fa(e). Now set

F ′kz
(e) := F ′kz

(e) + F
(z)
a (e) for all 1 ≤ z ≤ r and all

e ∈ E, and set F ′A(e) := F ′A(e)− Fa(e) for all e ∈ E.

4. For all 1 ≤ z ≤ r, choose a partial flow of Fkz starting
in u0 and choose a subflow F (z) (of this partial flow)
of size Fkz (e0) if z 6= r and of size U if z = r. Then
replace these subflows by the augmenting flow, i.e., set
F ′kz

(e) := F ′kz
(e) − F (z)(e) for all 1 ≤ z ≤ r and all

1The calculation of the corresponding augmenting flow for
Algorithm 1 is discussed in Section 5. Essentially, we will
calculate one augmenting flow per commodity that needs to
be augmented, and apply Algorithm 1 sequentially.
2We note that one could order the flows by decreasing size
to further decrease the amount of flows being rerouted.

e ∈ E, and set F ′A(e) := F ′A(e) +
∑r

z=1 F
(z)(e) for all

e ∈ E.

5. Replace possible cycles for flows in F ′ by cycles for F ′A:
If there is some flow F ′ ∈ F ′ which is not cycle-free,
then find a (directed) cycle C s.t. F ′(e) > 0 for all e ∈
C. Set F ′(e) := F ′(e) −mine′∈C F ′(e′) for all e ∈ C,
thus “removing” the cycle, and set F ′A(e) := F ′A(e) +
mine′∈C F ′(e′) for all e ∈ C. Continue removing (and
replacing) cycles in this way (for all flows in F ′) until
there are no cycles left in F ′. (Note that the removal of
a cycle implies that there is some edge e which changes
in the process from F ′(e) > 0 to F ′(e) = 0. Thus, all
flows contained in F ′ are cycle-free after removing at
most O(mk) cycles.)

6. Remove possible cycles for F ′A: First remove cycles for
the flow F ′A which consist only of an edge e ∈ E and
its corresponding edge e∗ ∈ E∗, until no such cycles
remain. Subsequently, remove arbitrarily chosen cycles
for F ′A iteratively until F ′A is cycle-free. Analogously
to the above, at most O(m) cycles need to be removed.

In the following, we will state and prove various lemmas
to lastly prove Theorem 2 in this section. We begin with
Lemma 1 and Lemma 2, which state that the new augment-
ing flow F ′A will not violate the capacity constraints set in
Definition 6:

Lemma 1. F ′A(e) +
∑

F ′∈F′ F
′(e) ≤ c(e) for all e ∈ E.

Proof. Since FA is an augmenting flow w.r.t. F , it holds
that FA(e) +

∑
F∈F F (e) ≤ c(e) for all e ∈ E. Thus, after

step 1 we have F ′A(e) +
∑

F ′∈F′ F
′(e) ≤ c(e) for all e ∈ E.

In step 2, F ′A(e) +
∑

F ′∈F′ F
′(e) remains unchanged for all

e ∈ E. In steps 3, 4, and 5 this is also the case since for
each e ∈ E, F ′A(e) is diminished by the same amount by
which

∑
F ′∈F′ F

′(e) grows larger, resp. vice versa. As the
cycle removals in step 6 can only diminish the above sum,
we obtain Lemma 1.

Lemma 2. F ′A(e∗) ≤
∑

F ′∈F′ F
′(e) for all e ∈ E.

Proof. Since FA is an augmenting flow w.r.t. F , it holds
that F ′A(e∗) ≤

∑
F ′∈F′ F

′(e) for all e ∈ E after step 1. In
step 2, both

∑
F ′∈F′ F

′(e0) and F ′A(e∗0) are diminished by
F ′A(e∗0), while nothing changes for the edges e 6= e0. In step
3,
∑

F ′∈F′ F
′(e) cannot decrease, while F ′A(e∗) cannot be

increased. Thus, at this point, F ′A(e∗) ≤
∑

F ′∈F′ F
′(e) still

holds for all e ∈ E. In step 4, the left hand side of the in-
equality is not increased, since e∗ /∈ E. As in this step F ′A(e)
is increased by the same amount by which

∑
F ′∈F′ F

′(e)
is diminished, we obtain F ′A(e∗) ≤

∑
F ′∈F′ F

′(e) + F ′A(e),
for all e ∈ E after step 4. By an analogous argument,
this new inequality holds also after step 5. After remov-
ing the “small” cycles in the first part of step 6 we have
F ′A(e∗) = 0 or F ′A(e) = 0 for all e ∈ E, while the new in-
equality still holds. As the subsequent cycle removals in the
second part of step 6 cannot decrease

∑
F ′∈F′ F

′(e) to less
than 0, the inequality given in Lemma 2 holds for all e ∈ E
with F ′A(e∗) = 0. Thus, consider the edges e ∈ E with
F ′A(e) = 0. For these edges, F ′A(e∗) ≤

∑
F ′∈F′ F

′(e)+F ′A(e)
implies F ′A(e∗) ≤

∑
F ′∈F′ F

′(e) which yields the desired
statement of Lemma 2 since the cycle removals in the second
part of step 6 cannot decrease

∑
F ′∈F′ F

′(e).



(a) Multi-commodity flow F = (F1, F2, F3, F4) and augmenting flow FA, before applying Algorithm 1 w.r.t. e∗0.

(b) Multi-commodity flow F ′ = (F ′1, F
′
2, F

′
3, F

′
4) and augmenting flow FA, after applying Algorithm 1.

Figure 3: In this example network, all unmarked edges have a capacity of one. The green flow F3 starting
in s3 has a size of two, all other solid flows have a size of one. The dashed augmenting flow FA for the
commodity K1 starting in s1 has a size of three. In Subfigure 3a, the (not drawn) edge (u, v) = e∗0 in N is a
farthest back-edge. When executing Algorithm 1, we obtain q = 3, k1 = 1, k2 = 3, k3 = 4, FA(e∗0) = 2, r = 2, and
U = 1. A part of the augmenting flow is re-routed in the node u via former paths of F1 and F3, whereas F1

and half of F3 are re-routed in the node v via a former path of the augmenting flow. The occurring cycles
wvx and zyu are removed afterwards by Algorithm 1.



Next, in Lemma 3 and 4, we show that the flows adhere
to the flow conditions and keep their demand unchanged.

Lemma 3. F ′A is a (single-commodity) flow for the com-
modity K and dF ′

A
= dFA .

Proof. We first show that F ′A is non-negative on all
edges in E∪E∗ and then that F ′A satisfies Conditions (1)–(3)
from Definition 1.

The only step where F ′A can switch to a negative value on
some edge e ∈ E ∪ E∗ is step 3 and this can only be the
case if e ∈ E. But since Fa is a subflow of a partial flow of
FA, we have Fa(e) ≤ F ′A(e) for all e ∈ E and F ′A(e) remains
non-negative in step 3. Note that at the beginning of step
3, it holds that F ′A(e) = FA(e) for all e ∈ E.

By an analogous argument, F ′y(e) is non-negative for all
1 ≤ y ≤ k and all e ∈ E. Since, in addition, F ′A(e∗) is
never increased in steps 2 to 6 for all e∗ ∈ E∗ (which implies
F ′A(e∗) ≤ FA(e∗)), Condition (1) holds due to Lemma 1 and
Definition 6.

We will now show that Conditions (2) and (3), i.e., flow
conservation and demand satisfaction, are maintained. Con-
sider DA(v) :=

∑
e∈in(v) F

′
A(e)−

∑
e∈out(v) F

′
A(e) for all v ∈

V . After step 1, DA(v) = 0 for all v ∈ V \ {s, t}, and
−DA(s) = DA(t) = dFA . However, in step 2, DA(u0) is
increased by F ′A(e∗0) and DA(v0) is diminished by F ′A(e∗0).
In step 3, DA(v0) is increased by F ′A(e∗0), DA(t) gets dimin-
ished by F ′A(e∗0), and DA(v) remains unchanged for all other
nodes v. In step 4, DA(u0) is diminished by F ′A(e∗0), DA(t)
gets increased by F ′A(e∗0), and DA(v) remains unchanged
for all other nodes v. Lastly, the replacement of cycles in
step 5 and the removal of cycles in step 6 do not change
any DA(v). Thus, DA(v) = 0 for all v ∈ V \ {s, t}, and
−DA(s) = DA(t) = dFA . Since F ′A is cycle-free, this im-
plies

∑
e∈out(s) F

′
A(e) = dFA =

∑
e∈in(t) F

′
A(e), i.e., dF ′

A
=

dFA .

Lemma 4. F ′ is a multi-commodity flow for K and dF ′y =

dFy for all 1 ≤ y ≤ k.

Proof. Lemma 4 follows by a proof analogous to the
proof of Lemma 3. Note that Condition (4) holds due to
Lemma 1.

Combining Lemmas 1 to 4, we obtain the following corol-
lary:

Corollary 1. F ′A is an augmenting flow w.r.t. F ′.

Furthermore, we need to prove that Algorithm 1 actually
makes progress, i.e., at least one of the edges e∗ has an
augmenting flow of zero afterwards.

Lemma 5. The number of edges e∗ ∈ E∗ with F ′A(e∗) > 0
is strictly smaller than the number of edges e∗ ∈ E∗ with
FA(e∗) > 0.

Proof. As observed in the proof of Lemma 3, we have
F ′A(e∗) ≤ FA(e∗) for all e∗ ∈ E∗. Thus, F ′A(e∗) > 0 implies
FA(e∗) > 0. Moreover, FA(e∗0) > 0, but F ′A(e∗0) = 0 (due to
step 2). The result follows.

Lastly, we show that the update performed by Algorithm
1 is actually consistent:

Lemma 6. (N,F ,F ′) is a consistent migration update.

Proof. By Lemma 4, we only have to show that Condi-
tion 5 holds, i.e., that for all e ∈ E:

∑k
y=1 max

(
Fy(e), F ′y(e)

)
≤ c(e) . Let e be an arbitrary edge in E. We observe that,
for all 1 ≤ y ≤ k, the only step (after setting F ′y(e) := Fy(e))
where F ′y(e) gets possibly increased is step 3. Moreover, a
positive increase in step 3 is only possible if y = kz for
some 1 ≤ z ≤ r. More specifically, we have F ′kz

(e) ≤
Fkz (e) + F

(z)
a (e) after step 6 for all 1 ≤ z ≤ r. Since

F
(z)
a (e) ≥ 0 for all 1 ≤ z ≤ r, we obtain

k∑
y=1

max
(
Fy(e), F ′y(e)

)
≤

k∑
y=1

Fy(e) +

r∑
z=1

F (z)
a (e) = Fa(e) +

k∑
y=1

Fy(e) .

Since Fa is a subflow of a partial flow of FA (compare step
3), we have Fa(e) ≤ FA(e). Thus,

k∑
y=1

max
(
Fy(e), F ′y(e)

)
≤ FA(e) +

k∑
y=1

Fy(e) ≤ c(e) .

The last inequality follows since FA is an augmenting flow
w.r.t. F .

We can now prove Theorem 2, which states that we can
update consistently to the new augmented flow in just a
linear number of updates3, resulting from applying the aug-
menting flow:

Theorem 2. Let N be a network and let F = (F1, . . . , Fk)
be a multi-commodity flow for the multi-commodity K =
(K1, . . . ,Kk). Let FA be an augmenting flow w.r.t. F for
the commodity (s, t) = Kx ∈ K where 1 ≤ x ≤ k. Then there
is a multi-commodity flow F∗ for K s.t. dF∗x = dFx + dFA

and dF∗y = dFy for all 1 ≤ y ≤ k with y 6= x. Moreover,

there is a consistent migration from F to F∗, consisting of
at most m + 1 consistent migration updates.

Proof. W.l.o.g., let h ∈ N be the number of times that
the steps 1 to 6 of Algorithm 1 are performed until, for
the resulting augmenting flow Fh

A w.r.t. the resulting multi-
commodity flow Fh, there is no edge e∗ ∈ E∗ with Fh

A(e∗) >
0. Note that, due to Lemma 5, it holds that h ≤ m. Thus,
by Lemmas 4 and 6, every one of the h iterations of the
steps 1 to 6 corresponds to a consistent migration update.
Moreover, dFh

y
= dFy for all 1 ≤ y ≤ k, by Lemma 4, and

Fh
A(e) +

∑
Fh∈Fh Fh(e) ≤ c(e) for all e ∈ E, by Lemma 1.

Therefore, increasing Fh
x (e) by Fh

A(e) for all e ∈ E corre-
sponds to a consistent migration update and the resulting
multi-commodity flow F∗ satisfies the conditions given in
Theorem 2.

5. AUGMENTING THE NETWORK IN
PRACTICE WITH ALGORITHM 1

A standard approach in the single-commodity case for in-
creasing the size of a flow is to compute augmenting paths,
apply them to the network, and iterate this process until
the desired demand is reached, if possible. However, this

3We note that other mechanisms such as, e.g., SWAN [8]
or zUpdate [14], do not give any bound on the number of
updates needed for consistent migration.



method requires a lot of updates in the network itself, as
the number of augmenting paths needed can be linear in
the number of edges. Due to the fact that we augment our
multi-commodity flow in Section 4 with a flow instead of a
path, in our framework just one augmenting flow per com-
modity suffices to satisfy any possible new demands, as we
show in this section.

While a linear programming solution does not show how to
migrate the network consistently, we can use LPs to compute
the augmenting flows needed for the consistent migration.
For our method we will first need the notion of difference
flows, which are flows obtained by “subtracting” a multi-
commodity flow from another.

Definition 7. Let N be a network, let K = (K1, . . . ,Kk)
be a multi-commodity, and fix some i ∈ N with 1 ≤ i ≤ k.
Let F = (F1, . . . , Fk),F ′ = (F ′1, . . . , F

′
k) be multi-commodity

flows for K with dFi < dF ′i and dFj = dF ′j for all 1 ≤ j ≤ k,

j 6= i. We define a difference flow ZF,F′ for F and F ′
in N as follows: First, for all e ∈ E: i) If

∑k
y=1 F

′
y(e) −∑k

y=1 Fy(e) ≥ 0, then ZF,F′(e) :=
∑k

y=1 F
′
y(e)−

∑k
y=1 Fy(e)

and ZF,F′(e∗) := 0. ii) If
∑k

y=1 F
′
y(e) −

∑k
y=1 Fy(e) < 0,

then set ZF,F′(e∗) := −
(∑k

y=1 F
′
y(e)−

∑k
y=1 Fy(e)

)
and

ZF,F′(e) := 0. Second, remove cycles until ZF,F′ is cycle-
free.

A difference flow is also an augmenting flow:

Lemma 7. Let ZF,F′ be a difference flow for F and F ′

with dFi < dF ′i . Then, ZF,F′ is an augmenting flow w.r.t.
F for the commodity Ki of size dF ′i − dFi > 0.

Proof. Recall that F and F ′ are multi-commodity flows
in N .

We start by checking the conditions for an augmenting

flow given in Definition 6. For all e ∈ E, we have ZF,F′(e) ≤∑k
y=1 F

′
y(e) −

∑k
y=1 Fy(e) ≤ c(e) −

∑k
y=1 Fy(e) in case i),

and ZF,F′(e) = 0 ≤ c(e) −
∑k

y=1 Fy(e) in case ii). For

all e∗ ∈ E∗, we have ZF,F′(e∗) = 0 ≤
∑k

y=1 Fy(e) in

case i), and ZF,F′(e∗) ≤ −
(∑k

y=1 F
′
y(e)−

∑k
y=1 Fy(e)

)
≤∑k

y=1 Fy(e) in case ii). Note that removing cycles can never
increase the flow on any edge.

As ZF,F′ is cycle-free, it is only left to show that ZF,F′

is a single-commodity flow for Ki in N of size dF ′i − dFi .

Condition (1) follows directly from the previous considera-

tions. The definition of ZF,F′ ensures that Condition (2) is
satisfied for all nodes except si and t. Note that removing
cycles does not change the difference between the amount of
outgoing and incoming flow for a node.

As dF ′i − dFi > 0 holds due to the construction of ZF,F′

and as all cycles were removed from ZF,F′ , we obtain that∑
e∈out(si) Z

F,F′(e) = dF ′i − dFi =
∑

e∈in(t) Z
F,F′(e), i.e.,

Condition (3) holds and ZF,F′ is an augmenting flow for
the commodity Ki of size dF ′i − dFi > 0.

In the following Algorithm 2, we will show how any desired
demands can be obtained by consistent migration, if there
is a multi-commodity flow satisfying these demands.

Algorithm 2. Let N be a network and let F be a multi-
commodity flow for the multi-commodity K. Let (d1, . . . , dk)

be a vector of demands s.t. i) there exists a multi-commodity
flow for K satisfying these demands, and ii) d1 ≥ dF1 , . . . , dk
≥ dFk .

1. Compute a multi-commodity flow F ′1 with a demand
vector of (d1, dF2 , . . . , dFk ) using an LP.

2. Compute the difference flow ZF,F′1 .

3. Augment F with ZF,F′1 using Algorithm 1, thereby
obtaining some flow F1 with a demand vector of
(d1, dF2 , . . . , dFk ).

4. Iterate the above three steps, thereby obtaining flows
F2, . . . ,Fk with demand vectors of (d1, d2, dF3 , . . . , dFk ),
. . . , (d1, d2, d3, . . . , dk−1, dFk ), (d1, . . . , dk)

Corollary 3. Algorithm 2 performs a consistent migra-
tion from F to some multi-commodity flow with a demand
vector of (d1, . . . , dk), using only k augmenting flows.

We note that Algorithm 2 can be used for any imaginable
purpose, as long as the respective desired demand vector (for
which some flow exists) can be computed. Common exam-
ples in practice are maximizing the sum of all commodities or
reaching max-min fairness. The respective desired demand
vectors can be computed with an LP, cf., e.g., [1][4]. If the
computation time is an issue as well, one can also resort to
approximation algorithms with a better runtime [7].

Furthermore, the actual updates performed in the net-
work itself are expensive, while “off-line” computations are
cheap regarding the execution time in SDNs, rendering the
computation overhead induced by the LPs to be bearable in
practice.

6. CONCLUDING REMARKS
In this work, we extended the notion of augmenting paths

to the anycast setting, providing algorithms to efficiently
tackle the problem of consistent migration in Software De-
fined Networks. A natural question arises: Can we gen-
eralize the concept of an augmenting path to the general
multi-commodity setting?

As a simple example shows (cf. Figure 4), applying an
augmenting path in a straightforward way to a network with
multiple sources and destinations will not even necessarily
result in a correct multi-commodity flow. The outgoing flow
can end up being re-routed to a wrong destination.

A logical consequence is to admit only augmenting flows
which re-route correctly, i.e., each outgoing flow of a source
is still routed to its assigned destination. However, as Hu
noted [9], it is unlikely that the technique of augmenting
paths can be extended to a general multi-commodity set-
ting (cf. Section 1). Nonetheless, what would happen if we
could develop an augmenting path approach that results in
correct multi-commodity flows? A more intricate example
(cf. Figure 5) shows that, even in this case, it is not always
possible to migrate consistently from the initial flow to the
augmented flow.

We thus believe that fundamentally different techniques
are required to apply the method of augmenting flows for
consistent migration updates beyond the anycast setting.
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(a) Initial network with just one flow
from s1 to t1.

(b) An augmenting flow is found from
s2 to t2.

(c) The resulting flows are not feasible
in the network!

Figure 4: The existence of an augmenting flow does not guarantee feasible flows for multiple sources and
destinations. E.g., the flow from s1 might end up in t2.

(a) There is an augmenting flow from s2 to t2 that results in a proper multi-commodity flow.

(b) The resulting new flow after the augmenting flow from above is applied to the network.

Figure 5: Neither (part of) the red nor the green flow can consistently migrate to any imaginable flow in
the network. Still, there is an augmenting flow moving both flows to other edges – which also respects
the assignment of the sink-destination pairs. Hence, even an augmenting flow resulting in a proper multi-
commodity flow does not guarantee a consistent migration for multiple sources and destinations.
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